Geometry: Finding Unknown Angles (Advanced Problems)
				Problem 1: In the figure below, ABC and DEF are triangles. AC = AB, AB // DF, BC // ED, AC // EF and ∠ CAB = 70°. Find ∠ x, ∠ y and ∠ z.
				
			
		
				Δ ABC is an isosceles triangle.
			
			
				∠ ACB  =  ∠ ABC
= (180° − 70°) ÷ 2
= 55°
			= (180° − 70°) ÷ 2
= 55°
				DF // AE and AD // EF
So, AEFD is a parallelogram.
			So, AEFD is a parallelogram.
				∠ DAE  =  ∠ DFE
= 70°
∠ x = 70°
			= 70°
∠ x = 70°
				DF // EB and DE // FB
So, DEBF is a parallelogram.
			So, DEBF is a parallelogram.
				∠ EBF  =  ∠ EDF
= 55°
∠ y = 55°
			= 55°
∠ y = 55°
				DE // CF and DC // EF
So, DEFC is a parallelogram.
			So, DEFC is a parallelogram.
				∠ DCF  =  ∠ DEF
= 55°
∠ z = 55°
		= 55°
∠ z = 55°
				Problem 2: Sally makes a flag using two triangles, ABC and CDE, on a straight pole XY as shown below. Triangle ABC is an equilateral triangle. Triangle CDE is a right-angled isosceles triangle with EC = ED and ∠ CED = 90°. Find the unknown angle, ∠ p, between the two triangles.
				
			
		
				Δ CDE is a right-angled isosceles triangle.
			
			
				∠ ECD  =  ∠ EDC
= (180° − 90°) ÷ 2
= 45°
			= (180° − 90°) ÷ 2
= 45°
				Δ ABC is an equilateral triangle.
			
			
				∠ ACB = 60°
			
			
				ECA is a straight line.
∠ ECD + ∠ p + ∠ ACB = 180°
∠ p = 180° − ∠ ECD − ∠ ACB
= 180° − 45° − 60°
= 75°
		∠ ECD + ∠ p + ∠ ACB = 180°
∠ p = 180° − ∠ ECD − ∠ ACB
= 180° − 45° − 60°
= 75°
				Problem 3: The figure below shows a parallelogram AECF inside another parallelogram ABCD. AB = AC, ∠ AEC = 53° and ∠ FDC = 38°. Find ∠ t.
				
			
		
				Opposite angles of a parallelogram are equal. 
			
			
				In the Parallelogram ABCD,
∠ ABC = ∠ ADC
= ∠ FDC
= 38°
			∠ ABC = ∠ ADC
= ∠ FDC
= 38°
				Δ ABC is an isosceles triangle as AB  =  AC. 
			
			
				In the Isosceles Triangle ABC,
∠ ABC = ∠ ACB = 38°
			∠ ABC = ∠ ACB = 38°
				Sum of adjacent angles of a parallelogram is 180°.
			
			
				In the Parallelogram AECF,
∠ EAF = 180° − ∠ AEC
= 180° 53°
= 127°
			∠ EAF = 180° − ∠ AEC
= 180° 53°
= 127°
				Opposite angles of a parallelogram are equal.
			
			
				∠ FCE  =  ∠ EAF
= 127°
			= 127°
				∠ t	 =  ∠ FCE  −  ∠ ACE
= ∠ FCE − ∠ ACB
= 127° − 38°
= 89°
		= ∠ FCE − ∠ ACB
= 127° − 38°
= 89°
				Problem 4: In the figure below, ABCD is a rhombus and ADE is a straight line. ∠ DAB = 51° and ∠ DCE = 42°. Find ∠ x and ∠ y.
				
			
		
				Opposite angles of a rhombus are equal.
			
			
				In the Rhombus ABCD,
∠ BCD = ∠ DAB = 51°
			∠ BCD = ∠ DAB = 51°
				AD // BC and ADE is a straight line.
Hence, DE // BC and BCED is a trapezium.
			
			Hence, DE // BC and BCED is a trapezium.
				In the Trapezium BCED,
∠ x = 180° − ∠ BCE
= 180° − ∠ BCD − ∠ DCE
= 180° − 51° − 42°
= 87°
			∠ x = 180° − ∠ BCE
= 180° − ∠ BCD − ∠ DCE
= 180° − 51° − 42°
= 87°
				BC = CD as all sides of a rhombus are equal.
			
			
				Triangle BCD is an isosceles triangle.
∠ y = ∠ BDC
= (180° − 51°) ÷ 2
= 64.5°
		∠ y = ∠ BDC
= (180° − 51°) ÷ 2
= 64.5°
				Problem 5: ABC is a right-angled triangle with ∠ BAC = 90°. OA = OD = OF. EO // CA and DO // BC. Find ∠ x.
				
			
		
				Triangle AOF is an equilateral triangle.
∠ AOF = ∠ OFA = ∠ FAO = 60°
			∠ AOF = ∠ OFA = ∠ FAO = 60°
				∠ DAF = 90°
∠ OAD = 90° − 60°
= 30°
			∠ OAD = 90° − 60°
= 30°
				Triangle AOD is an isosceles triangle.
∠ OAD = ∠ ODA = 30°
			∠ OAD = ∠ ODA = 30°
				ADB is a straight line.
∠ ODB = 180° − ∠ ODA = 150°
			∠ ODB = 180° − ∠ ODA = 150°
				DBEO is a trapezium.
∠ DBE = 180° − ∠ ODB
∠ DBE = 180° − 150° = 30°
			∠ DBE = 180° − ∠ ODB
∠ DBE = 180° − 150° = 30°
				∠ ABC = ∠ DBE = 30°
			
			
				In Triangle ABC,
∠ ACB = 180° − ∠ BAC − ∠ ABC
= 180° − 90° − 30°
= 60°
			∠ ACB = 180° − ∠ BAC − ∠ ABC
= 180° − 90° − 30°
= 60°
				∠ FCE = ∠ ACB = 60°
			
			
				OECF is a trapezium.
∠ CEO = 180° − ∠ FCE
= 120°
			∠ CEO = 180° − ∠ FCE
= 120°
				BEC is a straight line.
∠ x = 180° − ∠ CEO
= 180° − 120°
= 60°
		∠ x = 180° − ∠ CEO
= 180° − 120°
= 60°